Site is Loading, Please wait...

Subduction initiation forcing

The illustration depicts two endmember states in subduction zone initiation: vertically-forced and horizontally-forced subduction initiation.

Illustration of the two endmember states forcing a new subduction zone. The two endmember forcing states characterising subduction zone initiation (SZI) can be described as either vertically-forced or horizontally-forced. As outlined in Crameri et al. (2020), the dominant forcing is either—but never exclusively—vertical (i.e., some combination of plate buoyancy force, the force from any surface load, and vertical mantle-flow force), or horizontal (i.e., some combination of tectonic force and horizontal mantle-flow force).

  • Creator: Fabio Crameri
  • This version: 24.10.2021
  • License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
  • Specific citation: This graphic by Fabio Crameri from Crameri et al. (2020) is available via the open-access s-Ink repository.
  • Related reference: Crameri, F., V. Magni, M. Domeier, G.E. Shephard, K. Chotalia, G. Cooper, C. Eakin, A.G. Grima, D. Gürer, A. Király, E. Mulyukova, K. Peters, B. Robert, and M. Thielmann (2020), A transdisciplinary and community-driven database to unravel subduction zone initiation, Nature Communications, 11, 3750. doi:10.1038/s41467-020-17522-9
  • Light & dark versions
  • Vector format
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Earth interior model

Simplified model of the Earth’s interior and its global dynamics featuring a solid inner and a fluid outer core, a viscous partially molten but not fluid mantle, and characteristic surface topography.

Simplified model of the Earth interior and its global dynamics featuring a solid inner and a fluid outer core, a viscous partially molten but not fluid mantle, with hot material rising from the core-mantle boundary in form of active mantle plumes and cold material, including oceanic surface plates, sinking back into the mantle in a process called subduction. The dynamics in the Earth interior crucially shapes the rocky surface of the planet, creating mountain ranges and deep-sea trenches.

  • Creator: Fabio Crameri
  • This version: 06.10.2021
  • License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
  • Specific citation: This graphic by Fabio Crameri adjusted from Crameri & Tackley (2016) is available via the open-access s-ink.org repository.
  • Related reference: Crameri, F., and P. J. Tackley (2016), Subduction initiation from a stagnant lid and global overturn: new insights from numerical models with a free surface, Progress in Earth and Planetary Science, 3(1), 1–19, doi:10.1186/s40645-016-0103-8
  • Transparent background
  • Suitable for light & dark backgrounds
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Planetary interior

Comparison of suggested mantle convection in the Earth (mobile-lid mode) and Venus (inefficient short slab mode).

Comparison of suggested mantle convection in Earth and Venus. Mobile-lid mantle convection in the Earth involves most surface plates (dark brown), which are recycled by sinking back into the deep mantle, where large low shear-wave velocity provinces (LLSVPs) exist (whitish). The ongoing plate destruction causes a more heterogeneous mantle and a surface of variable age, with young and thin oceanic plates and old and thick continental plates that remain at the surface. Mantle plumes (light red) tend to occur far away from sinking plates. By contrast, the mode of mantle convection on Venus is suggested to consist of a nearly immobile, mostly stagnant lid, and only localised, short sinking plate portions that are formed by (and thus spatially coincide with) hot mantle upwelling (light red). The resulting surface deformation matches observations from coronae on Venus. The short sinking portions do not, in contrast to Earth, significantly move their tail ends at the surface, which explains the uniformly aged, relatively thick surface plate (dark brown).

  • Vector format
  • Transparent background
  • Light & dark background versions
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Earth processes

A schematic highlighting some of the most relevant Earth processes.

A schematic highlighting some of the most relevant Earth processes. Illustrated are an early Earth (without a fully developed solid inner core, left) that evolves into a dynamic, present-day-style Earth (right), which generates and erases geologic records of its transforming states and is now experiencing unprecedented environmental change. The arcuate lines surrounding globe illustrate the protective geomagnetic field that arises from the fluid dynamics within the outer core (light grey, illustrated with curled lines). The solid inner core is shown to scale as a darker grey. The mantle and crust (continental rocks are light brown, ocean floor basalts are dark brown; thicknesses greatly exaggerated, with mantle thickness to scale) is a single system driven by convection within the mantle that arises from radioactive decay of heat-producing elements and the loss of the deeply buried planet’s formational energy through cooling of the core. The lithosphere (crust and coldest mantle) is broken into separating and colliding plates whose distribution influence critical element distribution, earthquakes, volcanism, topography, critical zone, climate, water cycle, biogeochemistry, and biodiversity. The Earth is blanketed in a thin atmosphere (light blue). The profile of a landscape highlights Earth surface processes, the sedimentary record of Earth’s history, human influence, and geohazards to people. Displacement on faults may produce sudden strong earthquakes (creating significant hazards) or develop slowly with virtually imperceptible earthquakes. Landslides and coastal retreat, sea level rise, and tsunamis also present hazards to the coastal community. Uplifted hills will experience weathering (light brown) such that dense bedrock develops porosity and holds moisture and groundwater (light blue) that is exploited by vegetation. Deep groundwater aquifers (blue) are key water resources. Precipitation (blue lines) is returned to the atmosphere by evaporation and transpiration (blue dots) with excess water recharging groundwater or running off. Biologically-mediated gas exchange with the atmosphere occurs across the planet. Older sedimentary rocks (stippled brown) and young to contemporary sediments provide records of Earth’s evolving climate, biogeochemistry, and biodiversity. Humans are acting as geologic agents and affecting Earth processes in many ways, including through climate change (via urbanization, release of greenhouse gases, and vegetation change); nutrient input to terrestrial aquatic systems and the oceans (from agriculture and urban wastewater); changes in erosion and sedimentation (from land use change, dams, and other influences on river flow and sediment load); modification of the geographic distribution of biodiversity (from climate and land use change); and exacerbation of hazards (through rising sea level, more intense storms, land use change, and drought-induced wildland fires).

  • Layered version
  • Vector format
  • Transparent background version
  • Light & dark background versions
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Slab tearing

Time-evolution of subduction slab break-off shown in a global spherical 3-D model.

Evolution of subduction slab tearing and eventual slab break-off shown in a global spherical 3-D model by contours of viscosity. The stiff down-going plate (yellow) is moving towards the observer before subduction and is starting to laterally tear apart at depth, while the remaining intact part continues to subduct.

  • Creator: Fabio Crameri
  • This version: 01.09.2021
  • License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
  • Specific citation: This graphic by Fabio Crameri from Crameri and Tackley (2014) is available via the open-access s-Ink repository.
  • Related reference: Crameri, F., and P.J. Tackley (2014), Spontaneous development of arcuate single-sided subduction in global 3-D mantle convection models with a free surface, J. Geophys. Res. Solid Earth, 119(7), 5921-5942, doi:10.1002/2014JB010939
  • Transparent background
  • Suitable for light & dark background
  • Colour-vision deficiency friendly

Faulty or missing link? – Please report them via a reply below!

Plume-induced subduction

Temporal evolution of subduction initiation in a global, 3-D spherical numerical experiment showing the cold plates and hot mantle plumes.

Temporal evolution of subduction initiation in a global, 3-D spherical numerical experiment showing the cold plates as viscosity isosurfaces (grey) and mantle plumes as a temperature isosurface (red). Individual snapshots highlight the different phases of plume-induced subduction initiation characterised by (a) onset of hot mantle plumes, (b) local lithospheric thinning, (c-d) development of strong lithosphere-asthenosphere boundary topography through shallow horizontal mantle flow and an additional plume pulse, (e-f) plate failure and, finally, (g-h) buoyancy-driven subduction.

  • Creator: Fabio Crameri
  • This version: 01.09.2021
  • License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
  • Specific citation: This graphic by Fabio Crameri from Crameri and Tackley (2016) is available via the open-access s-Ink repository.
  • Related reference: Crameri, F., and P. J. Tackley (2016), Subduction initiation from a stagnant lid and global overturn: new insights from numerical models with a free surface, Progress in Earth and Planetary Science, 3(1), 1–19, doi:10.1186/s40645-016-0103-8
  • Transparent background
  • Suitable for light & dark background
  • Colour-vision deficiency friendly

Faulty or missing link? – Please report them via a reply below!

Ocean-plate age

Global seafloor age visualised on a custom Interrupted Mollweide map projection.

Maps of the age of oceanic plates, which varies between 0 and around 200 Ma due to ongoing plate motion and recycling (i.e., ocean-plate tectonics). Global sea-floor age data from Müller et al. (1997) visualised on a custom Interrupted Mollweide map projection from Crameri et al. (2020) focussing on the World’s oceans. The Scientific colour map ‘batlow‘ is used to represent data accurately and to all readers.

  • Creator: Fabio Crameri
  • This version: 20.08.2021
  • License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
  • Specific citation: This graphic by Fabio Crameri from Crameri et al. (2022) is available via the open-access s-Ink.org repository.
  • Related references:
    Crameri, F., G.E. Shephard, and E.O. Straume (2022, Pre-print), Effective high-quality science graphics from s-Ink.org, EarthArXiv, https://doi.org/10.31223/X51P78
    Müller, R. D., et al. (1997). “Digital isochrons of the world’s ocean floor.” J. Geophys. Res. 102(B2): 3211-3214.
    Crameri, F., V. Magni, M. Domeier, G.E. Shephard, K. Chotalia, G. Cooper, C. Eakin, A.G. Grima, D. Gürer, A. Király, E. Mulyukova, K. Peters, B. Robert, and M. Thielmann (2020), A transdisciplinary and community-driven database to unravel subduction zone initiation, Nature Communications, 11, 3750. doi:10.1038/s41467-020-17522-9
  • Additional map projection versions
  • Light & dark background versions
  • Perceptually uniform colour map
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Dynamic planet Earth

Illustration of the Earth with parts of its mantle extracted showing plate creation, cooling, and destruction.

Illustration of the Earth with parts of its mantle extracted showing plate creation, cooling, and destruction.

  • Alternative content
  • Layered version
  • Transparent background

Faulty or missing link? – Please report them via a reply below!

Mobile-lid mantle convection

Temporal evolution of a global, fully spherical, 3D model of whole-mantle convection.

Animation showing the temporal evolution of whole-mantle convection including plate tectonics. The convective turnover of the mantle is characterised by hot rising mantle plumes (indicated by a hot, red temperature isosurface), and cold and stiff subduction zones of heavy tectonic surface plates (indicated by grey viscosity isosurfaces). Like on the Earth, in this model the mantle convects including its surface thermal boundary layer, with subduction zones (i.e., the sinking of cold and heavy oceanic plates) being its main driver. The global, fully spherical, 3D mantle convection model has been run by the code StagYY and represents the actual dynamics in the Earth’s mantle under some assumptions and simplifications.

  • Creator: Fabio Crameri
  • This version: 07.08.2021
  • License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
  • Specific citation: This graphic by Fabio Crameri from Crameri and Tackley (2016) is available via the open-access s-ink.org repository.
  • Related reference: Crameri, F., and P. J. Tackley (2016), Subduction initiation from a stagnant lid and global overturn: new insights from numerical models with a free surface, Progress in Earth and Planetary Science, 3(1), 1–19, doi:10.1186/s40645-016-0103-8
  • Animated gif
  • Colour-vision deficiency friendly

Faulty or missing link? – Please report them via a reply below!

Exit mobile version
%%footer%%