Schematic tectonic reconstruction of the Anatolia SZI event (modified from van Hinsbergen et al., 2019a,b). Shown are the new subduction zone (pink line), other active subduction zones (solid purple lines), and transform faults (red dashed lines).

Schematic tectonic reconstruction of the Oman SZI event (modified from van Hinsbergen et al., 2019a,b). Shown are the new subduction zone (pink line), other active subduction zones (solid purple lines), and transform faults (red dashed lines).

The Oman subduction zone, together with the Anatolian subduction zone, formed the Western Neotethyan subduction system. The Oman SZI event was widely thought to have initiated along, or in the vicinity of, a Neotethyan mid-oceanic ridge (e.g., Boudier et al. 1988; Nicolas et al., 2000; Duretz et al., 2016). Recently, it has been suggested that the subduction zone initiated along a fracture zone, located parallel to the Arabian continent (van Hinsbergen et al., 2019a; Maffione et al., 2017).

The subduction zone seems to have initiated at 104 Ma (e.g., Guilmette et al., 2018) within Neotethyan oceanic lithosphere, similar to the Anatolia SZI (see Anatolia SZI event in the SZI database), but with the opposite vergence (van Hinsbergen et al., 2019a). At the time of SZI, both the downgoing and overriding plates were oceanic lithosphere of the Neotethys. In the case of Oman (and in contrast to the Anatolian subduction zone), the ‘Anadolu plate’ (Gürer et al., 2016) subducted below the Africa-Arabia continental plate (i.e., ‘Greater Adria’ of Gaina et al., 2015 and van Hinsbergen et al., 2019a,b). The subduction zone later terminated and resulted in widespread ophiolite obduction onto the Arabian continental margin in the Late Cretaceous at 70 ± 5 Ma, represented by the Semail ophiolite of Oman, the Kermanshah and Neyriz ophiolites of Iran, the Baer Bassit ophiolite of Syria, the Hatay ophiolites of SE Turkey, and the Troodos ophiolite of Cyprus (Koop and Stoneley, 1982; Searle and Cox, 1999; Nicolas et al., 2000; Al-Riyami et al., 2002; Searle et al., 2004; Dilek and Furnes, 2009; Homke et al., 2009; Agard et al., 2011).

For more details on the geologic record, corresponding plate reconstruction, and seismic tomography, see the SZI Database.

  • Creators: Fabio Crameri, Valentina Magni, Matthew Domeier, Ágnes Király, Grace Shephard
  • This version: 17.06.2025
  • License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
  • Specific citation: These graphics from Crameri et al. (2020) are available via the open-access s-ink.org repository.
  • Related reference: Crameri, F., V. Magni, M. Domeier, G.E. Shephard, K. Chotalia, G. Cooper, C. Eakin, A.G. Grima, D. Gürer, A. Király, E. Mulyukova, K. Peters, B. Robert, and M. Thielmann (2020), A transdisciplinary and community-driven database to unravel subduction zone initiation, Nature Communications, 11, 3750. doi:10.1038/s41467-020-17522-9
  • Seismic tomography VoteMap included
  • Perceptually-uniform colour map
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

26 views

Leave a Reply