Site is Loading, Please wait...

Tectonic plates (relief)

Global maps of tectonic plates of the Earth, consisting of 56 individual plates named according to abbreviations given in Argus et al. (2011).

Tectonic plates map of the Earth, consisting of 56 individual plates named according to abbreviations given in Argus et al. (2011). The Earth’s lithosphere, the rigid outer shell of the planet including the crust and part of the upper mantle, is fractured into about eight major plates and more minor tectonic plates. The relative movement of the plates typically ranges from zero to 10 cm annually. This relative motion causes different deformation at the plate boundaries, which can be grouped into convergence, divergence, and strike-slip motion. At divergent plate boundaries (i.e., spreading ridges), tectonic plates are created, whereas at convergent boundaries (i.e., subduction zones), tectonic plates are recycled back into the Earth’s mantle. Due to their strong deformation, those tectonic plate boundaries are the most common sites for earthquakes and volcanoes.

The Scientific colour map ‘batlow‘ is used to represent individual plates to all readers on this tectonic plates map.

  • Creator: Fabio Crameri
  • This version: 10.09.2021
  • License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
  • Specific citation: This graphic by Fabio Crameri from Crameri et al. (2020) is available via the open-access s-ink.org repository.
  • Related references:
    Argus, D. F., R. G. Gordon, and C. DeMets (2011), Geologically current motion of 56 plates relative to the no‐net‐rotation reference frame, Geochem. Geophys. Geosyst., 12, Q11001, doi:10.1029/2011GC003751.
    Bird, P. (2003), An updated digital model of plate boundaries, Geochem. Geophys. Geosyst., 4(3), 1027, doi:10.1029/ 2001GC000252.
    Crameri, F., G.E. Shephard, and E.O. Straume (2022, Pre-print), Effective high-quality science graphics from s-Ink.org, EarthArXiv, https://doi.org/10.31223/X51P78
  • Alternative map projections
  • Transparent background
  • Light & dark background versions
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Tectonic plates

Global maps of tectonic plates of the Earth, consisting of 56 individual plates named according to abbreviations given in Argus et al. (2011).

Maps of the tectonic plates of the Earth, consisting of 56 individual plates named according to abbreviations given in Argus et al. (2011). The Earth’s lithosphere, the rigid outer shell of the planet including the crust and part of the upper mantle, is fractured into about eight major plates and more minor tectonic plates. The relative movement of the plates typically ranges from zero to 10 cm annually. This relative motion causes different deformation at the plate boundaries, which can be grouped into convergence, divergence, and strike-slip motion. At divergent plate boundaries (i.e., spreading ridges), tectonic plates are created, whereas at convergent boundaries (i.e., subduction zones), tectonic plates are recycled back into the Earth’s mantle. Due to their strong deformation, those tectonic plate boundaries are the most common sites for earthquakes and volcanoes.

The Scientific colour map ‘batlow‘ is used to represent individual plates to all readers.

  • Creator: Fabio Crameri
  • This version: 10.09.2021
  • License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
  • Specific citation: This graphic by Fabio Crameri from Crameri et al. (2022) is available via the open-access s-ink.org repository.
  • Related references:
    Argus, D. F., R. G. Gordon, and C. DeMets (2011), Geologically current motion of 56 plates relative to the no‐net‐rotation reference frame, Geochem. Geophys. Geosyst., 12, Q11001, doi:10.1029/2011GC003751.
    Bird, P. (2003), An updated digital model of plate boundaries, Geochem. Geophys. Geosyst., 4(3), 1027, doi:10.1029/ 2001GC000252.
    Crameri, F., G.E. Shephard, and E.O. Straume (2022, Pre-print), Effective high-quality science graphics from s-Ink.org, EarthArXiv, https://doi.org/10.31223/X51P78
  • Alternative map projections
  • Transparent background
  • Light & dark background versions
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Tectonic plates (simple)

Global maps of tectonic plates of the Earth, consisting of 56 individual plates named according to abbreviations given in Argus et al. (2011).

Maps of the tectonic plates of the Earth, consisting of 56 individual plates named according to abbreviations given in Argus et al. (2011). The Earth’s lithosphere, the rigid outer shell of the planet including the crust and part of the upper mantle, is fractured into about eight major plates and more minor tectonic plates. The relative movement of the plates typically ranges from zero to 10 cm annually. This relative motion causes different deformation at the plate boundaries, which can be grouped into convergence, divergence, and strike-slip motion. At divergent plate boundaries (i.e., spreading ridges), tectonic plates are created, whereas at convergent boundaries (i.e., subduction zones), tectonic plates are recycled back into the Earth’s mantle. Due to their strong deformation, those tectonic plate boundaries are the most common sites for earthquakes and volcanoes.
The Scientific colour map ‘batlow‘ is used to represent individual plates to all readers.

  • Creator: Fabio Crameri
  • This version: 10.09.2021
  • License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
  • Specific citation: This graphic by Fabio Crameri from Crameri et al. (2022) is available via the open-access s-ink.org repository.
  • Related references:
    Argus, D. F., R. G. Gordon, and C. DeMets (2011), Geologically current motion of 56 plates relative to the no‐net‐rotation reference frame, Geochem. Geophys. Geosyst., 12, Q11001, doi:10.1029/2011GC003751.
    Bird, P. (2003), An updated digital model of plate boundaries, Geochem. Geophys. Geosyst., 4(3), 1027, doi:10.1029/ 2001GC000252.
    Crameri, F., G.E. Shephard, and E.O. Straume (2022, Pre-print), Effective high-quality science graphics from s-Ink.org, EarthArXiv, https://doi.org/10.31223/X51P78
  • Alternative map projections
  • Transparent background
  • Light & dark background versions
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Transform plate boundary

Illustration of a transform plate boundary on the Earth accommodating the relative motion of the plates by side-by-side (i.e., strike-slip) motion.

Illustration of a transform plate boundary on the Earth accommodating the relative motion of the plates by side-by-side (i.e., strike-slip) motion. It is one of three general types of plate boundaries.

  • Individual graphic layers
  • Compatible with light and dark backgrounds
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Divergent plate boundary

Illustration of a divergent plate boundary on the Earth accommodating the relative motion of the plates by plate formation.

Illustration of a divergent plate boundary on the Earth accommodating the relative motion of the plates by plate formation. It is one of three general types of plate boundaries. Divergent plate boundaries are, usually, characterised by a straight, but laterally offset, shape.

  • Individual graphic layers
  • Compatible with light and dark backgrounds
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Convergent plate boundary

Illustration of a convergent plate boundary on the Earth accommodating the relative motion of the plates by plate subduction and characterised by an arcuate shape.

Illustration of a convergent plate boundary on the Earth accommodating the relative motion of the plates by plate subduction. It is one of three general types of plate boundaries. Both convergent plate boundary and corresponding subduction zone have, usually, a characteristic arcuate (i.e., concave toward the upper plate) shape due to interaction with mantle flow.

  • Individual graphic layers
  • Compatible with light and dark backgrounds
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Plate boundaries & Euler pole

Illustration of how plates move across the Earth featuring the Euler pole and plate boundary end-members.

Illustration of how plates move across the Earth. The motion of (almost) rigid surface portions on a sphere can be described by a rotation around a rotation axis, which cuts the surface at the so-called Euler pole. This relative motion of the plates is mainly accommodated by localised deformation at plate boundaries. Three general types of plate boundaries exist: transform plate boundaries allow the plates to move alongside each other, and convergent and divergent plate boundaries allow for plate destruction and creation, respectively. Transform and divergent plate boundaries are almost straight features, but spreading ridges are generally offset laterally by transform intersections. Subduction zones are usually arcuate (i.e., concave toward the upper plate) due to interaction with mantle flow. Variations of these plate boundaries exist depending on the given combination of upper and lower plate nature (i.e., continental or oceanic).

  • Alternative content
  • Individual graphic layers
  • Dark version
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Exit mobile version
%%footer%%