Site is Loading, Please wait...

Continent surface areas

Global maps of the Earth schematically highlighting the individual surface areas of the World’s continents (i.e., landmasses).

Global maps of the Earth schematically highlighting the individual surface areas of the World’s continents (i.e., landmasses), including North and South America, Europa, Africa, Asia, Australia and Oceania, and Antarctica.

  • Different map projection versions
  • Black&white versions
  • Transparent background
  • Light & dark background versions
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Earth’s elements

The most common elements inside the planet Earth.

The most common elements inside the planet Earth. The Scientific colour map ‘batlow‘ is used to represent individual elements to all readers.

  • Bar plot versions
  • Black&white versions
  • Transparent background
  • Light & dark background versions
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Crust elements

The most common elements inside the Earth’s crust.

The most common elements inside the Earth’s crust. The Scientific colour map ‘batlow‘ is used to represent individual elements to all readers.

  • Bar plot versions
  • Black&white versions
  • Transparent background
  • Light & dark background versions
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Surface areas on the Earth

A direct comparison of the relative surface area covered by individual land masses and oceans on the Earth.

A direct comparison of the relative surface area covered by individual land masses („continents“) and oceans on the Earth.

  • Vector format
  • Transparent background
  • Light & dark background versions
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Geodynamic modelling philosophies

The two overarching geodynamic modelling philosophies: Specific modelling and generic modelling.

The two overarching geodynamic modelling philosophies. (a) Specific modelling and (b) generic modelling have different scientific goals and need to be used, communicated, and reviewed differently.

  • Creator: Fabio Crameri
  • This version: 12.11.2021
  • License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
  • Specific citation: This graphic by Fabio Crameri from van Zelst et al. (2021) is available via the open-access s-ink.org repository.
  • Related reference: van Zelst, I., F. Crameri, A.E. Pusok, A.C. Glerum, J. Dannberg, C. Thieulot (2022), 101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth, Solid Earth, 13, 583–637, doi:10.5194/se-13-583-2022
  • Transparent background
  • Dark background version
  • Vector format
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Manuscript structure (geodynamic modelling)

Manuscript structure for a geodynamic numerical modelling study following the IMRAD structure.

Manuscript structure for a geodynamic numerical modelling study following the IMRAD structure. In particular, the methods section should include a description of the physical and numerical model, the design of the study, and of any techniques used to visualise and analyse the numerical data.

  • Creator: Fabio Crameri
  • This version: 12.11.2021
  • License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
  • Specific citation: This graphic by Fabio Crameri from van Zelst et al. (2021) is available via the open-access s-ink.org repository.
  • Related reference: van Zelst, I., F. Crameri, A.E. Pusok, A.C. Glerum, J. Dannberg, C. Thieulot (2022), 101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth, Solid Earth, 13, 583–637, doi:10.5194/se-13-583-2022
  • Transparent background
  • Dark background version
  • Vector format
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Geodynamic model complexity

Different model complexities for the heart (top) and the Earth (bottom).

Different model complexities for the heart (top) and the Earth (bottom). A simpler model can be more useful: the basic shape of the heart has likely become the most successful model, indeed a true icon, only because it was neither too complex (it can be reproduced easily), nor too simple (its characteristic shape is still recognisable). Finding the right level of complexity is challenging and must repeatedly be considered carefully by the modeller for each new modelling task at hand.

  • Creator: Fabio Crameri
  • This version: 12.11.2021
  • License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
  • Specific citation: This graphic by Fabio Crameri from van Zelst et al. (2021) is available via the open-access s-ink.org repository.
  • Related reference: van Zelst, I., F. Crameri, A.E. Pusok, A.C. Glerum, J. Dannberg, C. Thieulot (2022), 101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth, Solid Earth, 13, 583–637, doi:10.5194/se-13-583-2022
  • Transparent background
  • Dark background version
  • Vector format
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Geodynamic model simplification

Potential options for geodynamic model simplification.

Potential options for geodynamic model simplification. Note that ‘multiphysics’ is meant beyond the already coupled system.

  • Creator: Fabio Crameri
  • This version: 12.11.2021
  • License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
  • Specific citation: This graphic by Fabio Crameri from van Zelst et al. (2021) is available via the open-access s-ink.org repository.
  • Related reference: van Zelst, I., F. Crameri, A.E. Pusok, A.C. Glerum, J. Dannberg, C. Thieulot (2022), 101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth, Solid Earth, 13, 583–637, doi:10.5194/se-13-583-2022
  • Transparent background
  • Dark background version
  • Vector format
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Effective visualisation (geodynamic modelling)

Effective visualisation through a scientific use of colours.

Effective visualisation through a scientific use of colours. Non-scientific colour maps (a,b) like rainbow always misrepresent data, are often not intuitive, and are inaccessible to a large portion of the readers, while scientific colour maps (c,d) like lajolla or vik (Crameri et al., 2020) ensure unbiased and intuitive data representation and are inclusive to readers with colour-vision deficiencies and even colour blindness.

  • Creator: Fabio Crameri
  • This version: 12.11.2021
  • License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
  • Specific citation: This graphic by Fabio Crameri from van Zelst et al. (2021) is available via the open-access s-ink.org repository.
  • Related reference: van Zelst, I., F. Crameri, A.E. Pusok, A.C. Glerum, J. Dannberg, C. Thieulot (2022), 101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth, Solid Earth, 13, 583–637, doi:10.5194/se-13-583-2022
  • Transparent background
  • Dark background version
  • Vector format
  • Colour-vision deficiency friendly
  • Readable in black&white

Faulty or missing link? – Please report them via a reply below!

Exit mobile version
%%footer%%